This article was downloaded by: On: *26 January 2011* Access details: *Access Details: Free Access* Publisher *Taylor & Francis* Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Liquid Crystals

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713926090

Synthesis of perfluoroalkylated azo dyes and their application to guest-host liquid crystal display

M. Matsui^a; H. Nakagawa^a; B. Joglekar^a; K. Shibata^a; H. Muramatsu^a; Y. Abe^b; M. Kaneko^c ^a Department of Chemistry, Faculty of Engineering, Gifu University, Gifu, Japan ^b Research Institute for Advanced Science and Technology, Osaka Prefecture University, Sakai, Osaka, Japan ^c Yokohama Research Center, Mitsubishi Chemical Co., Yokohama, Japan

To cite this Article Matsui, M., Nakagawa, H., Joglekar, B., Shibata, K., Muramatsu, H., Abe, Y. and Kaneko, M.(1996) 'Synthesis of perfluoroalkylated azo dyes and their application to guest-host liquid crystal display', Liquid Crystals, 21: 5, 669 – 682

To link to this Article: DOI: 10.1080/02678299608032879 URL: http://dx.doi.org/10.1080/02678299608032879

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Synthesis of perfluoroalkylated azo dyes and their application to guest-host liquid crystal display

by M. MATSUI*[†], H. NAKAGAWA[†], B. JOGLEKAR[†], K. SHIBATA[†], H. MURAMATSU[†], Y. ABE[‡] and M. KANEKO[§]

[†]Department of Chemistry, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu 501-11, Japan

> ‡Research Institute for Advanced Science and Technology, Osaka Prefecture University, Gakuen-Cho 1-2, Sakai, Osaka 593, Japan

§Yokohama Research Center, Mitsubishi Chemical Co., Kamoshida 1000, Aoba, Yokohama 227, Japan

(Received 24 April 1996; accepted 15 May 1996)

A series of novel dis- and trisazo dyes containing a perfluoroalkyl, perfluoroalkylthio and perfluoroalkylsulphonyl groups have been synthesized. The absorption bands of these dyes were more bathochromic than the corresponding alkyl derivatives. The solubility of disazo dyes containing perfluoroalkyl and perfluoroalkylthio groups in hexane was larger than the alkyl derivatives. To obtain good dichroism, the azo dyes were required to have a large l/d ratio (>2.50). These novel azo compounds could be used practically as dichroic dyes in guest–host liquid crystal displays.

1. Introduction

 π -Conjugated organic compounds have been used as organic functional materials in information display systems, electro-photography, laser technology, energytransfer systems and data storage [1]. Linear polyazo and anthraquinone dyes bearing long alkyl chain(s) have been used practically as dichroic dyes [2]. Organic compounds containing fluorine atoms and/or a perfluoroalkyl group can change the property of the molecule. For example, 3-(perfluoroalkyl)coumarins show excellent photostability [3], phthalocyanines substituted with perfluoroalkyl groups are very soluble in organic solvents [4], and photochromic diarylethenes containing a perfluorocyclopentenyl moiety are very thermally stable [5]. By introduction of the perfluoroalkyl moiety into dis- and trisazo dyes, variation in the shift of the absorption band due to its electron-withdrawing nature, higher solubility in organic solvents and host liquid crystals due to weak intermolecular interaction and the steric effect between the fluorine-containing moieties, and the higher contrast in their dichroism because of the rigidity of the perfluoroalkyl moiety are anticipated.

We describe here the synthesis of a series of dis- and trisazo dyes containing a perfluoroalkyl, perfluoroalkylthio, and perfluoroalkylsulphonyl group and their

*Author for correspondence.

application to dichroic dyes in guest-host liquid crystal displays.

2. Results and discussion

2.1. Synthesis

4-(Perfluoroalkyl)anilines 1 c-e were prepared by the reaction of 4-iodoaniline with perfluoroalkyl iodide in the presence of copper in good yields [6]. 4-(Alkylthio) anilines [7] 1 f-h and 4-(alkylsulphonyl)anilines [8] 1 m,o were synthesized as described in the literature. 4-(Perfluoroalkylsulphonyl)anilines 1 p-s were obtained by S-perfluoroalkylation of 4-nitrothiophenol to afford 4-(perfluoroalkylthio)nitrobenzene, followed by oxidation of the sulphide moiety and reduction of the nitro group [9]. 4-(Perfluoroalkylthio)anilines 1 i-m were prepared by the reaction of 4-aminothiophenol with perfluoroalkyl iodide in the presence of sodium hydride in moderate to good yields (see Scheme 1).

 $\begin{aligned} \mathsf{Rf} &= \mathsf{C_4F_9}, \ \mathsf{C_6F_{13}}, \ \mathsf{C_8F_{17}}, \ \mathsf{C_4F_9CH_2CH_2}, \ \mathsf{C_6F_{13}CH_2CH_2} \\ \mathsf{RfS} &= \mathsf{R}^1 \end{aligned}$

Scheme 1.

0267-8292/96 \$12.00 © 1996 Taylor & Francis Ltd.

Scheme 2.

Scheme 2 indicates the synthesis of the phenylene disazo dyes 4a-m and 5k,m. The anilines 1b-m reacted with 4-nitrosonitrobenzene to give the corresponding 4-nitroazobenzenes 2b-m, of which the nitro group was reduced by sodium sulphide to afford the 4-(arylazo)anilines 3b-m, followed by diazotization-coupling reaction to form the phenylene disazo dyes 4a-m and 5k,m.

The synthesis of the phenylene disazo dyes 4n-s bearing a RSO_2 , $R_fCH_2CH_2SO_2$ and R_fSO_2 group, where R and R_f represent alkyl and perfluoroalkyl groups respectively, is shown in Scheme 3. Anilines 1n-s did not react with 4-nitrosonitrobenzene, due to the strong electron-withdrawing nature of the substituents. The diazotization-coupling reaction of the anilines 1n-s with sodium anilinomethanesulphonate followed by deprotection under alkaline conditions gave the 4-(arylazo)anilines 3n-s, which further reacted with N,N-(diethyl)aniline to afford 4n-s.

Scheme 4 shows the synthesis of the naphthylene disazo dyes 7 and 8. Anilines 1 reacted with 1-naphthylamine to afford the 4-(arylazo)-1-naphthylamines 6,

which further reacted with N,N-(dialkyl)anilines to give the naphthylene derivatives 7 and 8.

Phenylene trisazo 11 and naphthylene trisazo dyes 13c were similarly synthesized as shown in Schemes 5 and 6, respectively.

13c

Scheme 6.

2.2. Absorption band

Table 1 summarizes the physical properties of azo dyes.

The absorption band of the phenylene disazo dyes 4 was more bathochromic in the order of substituent $R^1: R, H < RS < R_fCH_2CH_2S < R_fS, R_f < RSO_2, R_fCH_2 CH_2SO_2 < R_fSO_2$ (runs 1–19). The chromophore of the azo dyes has been reported to be an intramolecular charge-transfer system [10]. Therefore, the order of the bathochromicity is consistent with that of Hammett's σ_p constant of the substituent R^1 (CH₃ = -0.17, H = 0.00, CH₃S = 0.00, CF₃S = 0.50, CF₃ = 0.54, CH₃SO₂ = 0.68, CF₃SO₂ = 0.93) [11]. The chain length of the R and R_f moiety in each R^1 substituent did not affect the absorption bands, suggesting similar electron-withdrawing nature of the series of substituents (runs 3–19). The naphthylene disazo dyes 7 were more bathochromic than the corresponding phenylene derivatives 4, due to an extended π -electron system (runs 1–3, 6, 9, 11, 13, 14, 16, 17, 22–31). N,N-Diethylamino derivatives were more bathochromic than the N,N-dimethylamino derivatives (runs 11, 13, 20, 21, 27, 32). Both the absorption bands of the naphthylene disazo 7 and phenylene trisazo dyes 11 were more bathochromic in the order of substituent R^1 : C₄H₉ < C₄H₉S < C₄F₉S, C₄F₉ (runs 23–25, 27, 33–36). This is the same tendency as the phenylene

Physical properties of azo dyes.

Run	Compound	R^1	R ²	$\lambda_{\rm max}/{\rm nm^*}$	Solubility ^b /mg/100 ml (mmol dm ⁻³)	ZLI-1565		ZL1-4792			
						$\lambda_{\rm max}/{\rm nm}$	S	$\lambda_{\rm max}/{\rm nm}$	S	$ heta/^{\circ}$	I/d
1	4 a	Н	NEt ₂	454	17 (0.48)	492	0.68	491	0.71	2.3	2.85
2	4b	C4H9	NEt ₂	453	76 (1.84)	492	0.72	491	0.75	2.0	3.25
3	4 c	C_4F_9	NEt ₂	474	222 (3.86)	514	0.71	507	0.76	2.3	3.83
4	4d	$C_{6}F_{13}$	NEt ₂	474	248 (3.67)	508	0.75	504	0.78	d	đ
5	4e	C_8F_{17}	NEt ₂	473	132 (1.70)	512	0.78	510	0.79	d	d
6	4f	C ₄ H ₉ S	NEt ₂	462	24 (0.54)	499	0.73	499	0.76	1.5	3.16
7	4g	C ₆ H ₁₃ S	NEt ₂	460	46 (0.97)	496	0.75	494	0.75	d	d
8	4h	$C_8H_{17}S$	NEt ₂	460	23 (0.46)	499	0.75	498	0.77	d	d
9	4i	C ₄ F ₉ CH ₂ CH ₂ S	NEt ₂	466	219 (3.45)	502	0.72	498	0.77	1.7	3.18
10	4j	$C_6F_{13}CH_2CH_2S$	NEt ₂	468	293 (3.99)	501	0.76	501	0.77	d	d
11	4k	C ₄ F ₉ S	NEt ₂	476	56 (0.92)	515	0.70	509	0.76	1.9	3.19
12	41	$C_6F_{13}S$	NEt ₂	475	62 (0.88)	514	0.77	511	0.78	d	d
13	4 m	$C_8F_{17}S$	NEt ₂	477	22 (0.27)	514	0.70	507	0.76	d	d
14	4n	$C_4H_9SO_2$	NEt ₂	478	15 (0-31)	514	0.74	512	0.77	2.5	3.62
15	4 o	$C_6H_{13}SO_2$	NEt_2	480	23 (0.46)	514	0.74	512	0.76	d	đ
16	4р	C ₄ F ₉ CH ₂ CH ₂ SO ₂	NEt_2	482	31 (0.46)	512	0.72	506	0.76	2.6	3.56
17	4q	$C_4F_9SO_2$	NEt ₂	500	18 (0.28)	538	0.70	530	0.76	2.1	2.98
18	4r	$C_6F_{13}SO_2$	NEt ₂	504	9 (0.12)	517	0.75	514	0.77	d	d
19	4 s	$C_8F_{17}SO_2$	NEt ₂	503	7 (0.08)	c	c	c	c	d	d
20	5k	C₄F ₉ S	$NM\tilde{e}_2$	456	26 (0.45)	499	0.76	498	0.77	d	d
21	5m	$C_8F_{17}S$	NMe_2	459	5 (0.06)	c	c	c	c	d	d
22	7a	Н	NEt ₂	495	29 (0.72)	531	0.67	525	0.68	1.7	2.28
23	7Ь	C₄H₀	NEt ₂	494	110 (2.38)	532	0.71	525	0.73	1.4	2.52
24	7c	C₄F ₉	NEt ₂	513	356 (5.70)	555	0.70	549	0.75	1.1	2.50
25	7f	C ₄ H ₉ S	NEt ₂	506	64 (1·29)	538	0.73	532	0.75	d	d
26	7i	C ₄ F ₉ CH ₂ CH ₂ S	NEt_2	508	241 (3.51)	541	0.72	536	0.74	d	d
27	7k	C ₄ F ₉ S	NEt_2	516	251 (3.82)	541	0.74	535	0.73	d	d
28	7m	$C_8F_{17}S$	NEt ₂	515	13 (0.02)	560	0.66	545	0.72	d	d
29	7n	$C_4H_9SO_2$	NEt_2	518	19 (0.36)	560	0.74	554	0.74	d	d
30	7р	C ₄ F ₉ CH ₂ CH ₂ SO ₂	NEt ₂	527	21 (0.29)	566	0.73	531	0.75	d	d
31	7 <u>q</u>	$C_4F_9SO_2$	NEt ₂	543	40 (0.58)	585	0.73	578	0.75	d	d
32	8k	C ₄ F ₉ S	NMe ₂	505	78 (1.24)	560	0.69	545	0.73	d	d
33	11b	C₄H ₉	NEt ₂	477	4 (0.07)	519	0.81	516	0.81	d	d
34	11c	C_4F_9	NEt_2	490	5 (0.08)	530	0.82	527	0.82	2.9	4·45
35	11f	C₄H ₉ S	NEt ₂	483	2 (0.04)	c	c	c	c	d	d
36	11k	C₄F ₉ S	NEt ₂	491	4 (0.06)	527	0.82	c	c	d	d
37	13c	C ₄ F ₉	NEt ₂	515	229 (3-14)	552	0.73	542	0.74	1.9	3.42

^a In hexane.

^b In hexane at 25°C.

^c Insoluble in liquid crystals.

^d No calculation.

disazo dyes 4. Bathochromicity was almost in the order of dye skeleton: phenylene disazo < phenylene trisazo < naphthylene disazo, naphthylene trisazo (runs 3, 24, 34, 37).

2.3. Solubility

Solubility of the phenylene disazo dyes 4 in hexane was almost in the order of substituent R^1 : R_1 SO₂, $R_{\rm f}$ CH₂CH₂SO₂, RSO₂ < RS, $R_{\rm f}$ S < H < R < $R_{\rm f}$ CH₂- CH_2S , R_f (runs 1–19). Especially, dyes 4c,d,i and j containing a C_4F_9 , C_6F_{13} , $C_4F_9CH_2CH_2S$ and C₆F₁₃CH₂CH₂S group were very soluble (runs 3, 4, 9, 10). The maximum solubility of the perfluoroalkyl and perfluoroalkylthio derivatives 4c-e and 4k-m was observed around C4 to C6 chain length (runs 3-5, 11-13). This can be attributed to a weak intermolecular interaction and steric effects of perfluoroalkyl groups. A long perfluorooctyl group does not increase solubility, probably because of its oil-repelling nature. Alkylsulphonyl and perfluoroalkylsulphonyl derivatives were less soluble due to an increment of the inorganic nature of the substituents. The naphthylene disazo dyes 7 were more soluble than the phenylene derivatives 4 (runs 1-3, 6, 9, 11, 13, 14, 16, 17, 22-31). N,N-Diethylamino derivatives 4h,m and 7k were more soluble than the N.N-dimethylamino derivatives 5 k.m and 8k (runs 11, 13, 20, 21, 27, 32). The phenylene trisazo dyes 11 were less soluble than the disazo dyes (runs 2, 3, 6, 11, 33–36). No improvement in solubility by the introduction of perfluoroalkyl moiety in dyes 11 was observed (runs 33-36). Thus, terminal perfluoroalkyl and dialkylamino moieties and central aromatic part(s) play very important role in affecting a change in the solubility. The solubility was almost in the order of dye skeleton: phenylene trisazo < naphthylene trisazo, phenylene disazo < naphthylene disazo (runs 3, 24, 34, 37). In order to dissolve these dyes in a liquid crystal, the value of the solubility in hexane at 25°C was required to be more than 0.01 mmol dm⁻³.

2.4. Dichroism

A typical change in the absorption band of the dichroic dye 5k in a liquid crystal (ZLI-1565) cell is depicted in figure 1.

The order parameter (S) is defined by the following equation: $S = (A_{\parallel} - A_{\perp})/(A_{\parallel} + 2A_{\perp})$, where A_{\parallel} and A_{\perp} represent absorbances of light polarized parallel and perpendicular to the direction of the alignment of the dye molecule in the liquid crystal medium, respectively. The S value of **5k** was calculated to be 0.76.

Both the absorption band and S value were affected by the nature of the host liquid crystal. The absorption bands in ZLI-4792 (fluoro liquid crystal) were slightly hypsochromic compared to those in ZLI-1565 (cyano liquid crystal), because of the higher polarity of ZLI-1565. The S values in ZLI-4792 were larger than those in ZLI-1565. R^1 -substituted dyes showed a higher dichroism than the unsubstituted dyes. For example, the S values of perfluoroalkyl derivatives **4c** and **7c** were larger than those of the unsubstituted **4a** and **7a**, respectively (runs 1, 3, 22, 24). Thus, introduction of a long and linear substituent in R^1 was very effective in

Figure 1. Dichroism of azo dye.

Wavelength/nm

enhancing dichroism. No remarkable difference in dichroism among the substituents C_4H_9 , C_4F_9 , C_4H_9S , C_4F_9S , $C_4H_9SO_2$, and $C_4F_9SO_2$ was observed (runs 2, 3, 6, 11, 14, 17). The same tendency was observed for the naphthylene disazo and phenylene trisazo skeletons (runs 23–25, 27, 29, 31, 33, 34). N,N-Diethylamino derivatives **4k** and **7k** showed similar S values as N,N-dimethylamino derivatives **5k** and **8k** (runs 11, 20, 27, 32).

Dichroism of a molecule can be analysed by both the deviation of the angle (θ) between the direction of transition moment and the long axis, and l/d ratio, where l and d represent the length of long axis and diameter of circumscribed cylinders of the molecule, respectively. For the MO calculation, the π -conjugated skeleton of the azo dyes was assumed planar, azo linkage in the all-*trans* form, and the molecule with Cs symmetry. The van der Waals radius was also taken into account. The heat of formation of all conformations of the molecules was calculated. The value and l/d ratio in the most stable conformation were also calculated. A typical example is shown in figure 2. The calculated θ value of 4c was 2.3°. The l and d values were calculated to be 28.34 and 7.39 Å respectively, the l/d ratio being 3.83.

The results of selected azo dyes are indicated in the table. All the θ values in the azo dyes were very small ($<2.9^{\circ}$). No significant difference among unsubstituted, alkyl, alkylthio, alkylsulphonyl, perfluoroalkyl, perfluoroalkylthio and perfluoroalkylsulphonyl derivatives was observed (runs 1–3, 6, 9, 11, 14, 16, 17). No

remarkable difference among the phenylene disazo, naphthylene disazo, phenylene trisazo, and naphthylene trisazo dyes was also observed (runs 3, 24, 34, 37). Thus, the structure of the azo dyes has a small θ value.

Introduction of a R^1 substituent increased the l/dratio, resulting in enhanced dichroism (runs 1, 3, 22, 24). No remarkable difference in the ratio among butyl, butylthio, perfluorobutyl and perfluorobutylthio derivatives was observed (runs 2, 3, 6, 11). The l/d ratio was almost in the order of dye skeleton: naphthylene disazo < phenylene disazo, naphthylene trisazo < phenylene trisazo (runs 3, 24, 34, 37). This is consistent with the S value. Thus, dichroism of the azo dyes in liquid crystals was mainly affected by the l/d ratio of the molecule. To obtain good dichroism (S > 0.70), the l/dratio of the azo dyes was required to be more than 2.50.

3. Conclusions

Disazo dyes containing perfluoroalkyl and perfluoroalkylthio groups were more soluble than the corresponding alkyl derivatives. The S values of all the dis- and trisazo dyes were more than 0.70, the practically required value, indicating that these can be used as dichroic dyes in guest-host liquid crystal displays.

4. Experimental

Melting points were measured with a Yanagimoto MP-S2 micro melting point apparatus. NMR spectra were taken on Jeol α -400 spectrometer. Mass spectra were measured with Shimadzu 9020-DF and QP-1000

Figure 2. Calculation of l/d ratio of azo dye 4c.

spectrometers. UV spectra were recorded on a Shimadzu 160-A spectrometer.

4.1. Materials

4-Butylaniline (1 b) and 4-aminoazobenzene (3 a) were purchased from Tokyo Kasei Co. Ltd.

4.2. Synthesis of anilines **1***i*–*m*

To a DMF solution (20 ml) of thiophenol (24 mmol) was added sodium hydride (720 mg, 30 mmol). The mixture was stirred for 3 h at room temperature. Perfluoroalkyl iodide (30 mmol) was added to the solution and stirred under a nitrogen atmosphere at room temperature overnight. The mixture was poured into water (150 ml), the product extracted with ether $(100 \text{ ml} \times 2)$, washed with brine and dried over anhydrous sodium sulphate. After evaporation of the solvent, the product was distilled under reduced pressure. Physical and spectral data are given below.

4-(1*H*,1*H*,2*H*,2*H*-Perfluorohexylthio)aniline (1 i). Yield 73 per cent; b.p. 114–116°C/200 Pa. ¹H NMR (400 MHz, CDCl₃) δ =2·31 (tt, *J* = 16·8 and 8·2 Hz, 2 H), 2·93 (tt, *J* = 8·2 and 3·2 Hz, 2 H), 3·75 (br s, 2 H), 6·65 (d, *J* = 8·5 Hz, 2 H), 7·62 (d, *J* = 8·5 Hz, 2 H). EI MS *m/z* (relative intensity, per cent): 371 [M]⁺ (100), 124 (88).

4-(1*H*,1*H*,2*H*,2*H*-Perfluorooctylthio)aniline (1 j). Yield 55 per cent; b.p. 119–120°C/170 Pa. ¹H NMR (400 MHz, CDCl₃) δ = 2·32 (tt, *J* = 17·7 and 8·2 Hz, 2 H), 2·93 (tt, *J* = 8·2 and 3·1 Hz, 2 H), 3·72 (br s, 2 H), 6·63 (d, *J* = 8·2 Hz, 2 H), 7·26 (d, *J* = 8·2 Hz, 2 H). EI MS *m/z* (relative intensity, per cent): 471 [M]⁺ (25), 124 (100).

4-(Perfluorobutylthio)aniline (**1 k**). Yield 87 per cent; b.p. 80°C/130 Pa. ¹H NMR (400 MHz, CDCl₃) $\delta = 3.96$ (br s, 2 H), 6.59 (d, J = 8.6 Hz, 2 H), 7.38 (d, J = 8.6 Hz, 2 H). EI MS m/z (relative intensity, per cent): 343 [M]⁺ (69), 124 (100).

4-(Perfluorohexylthio)aniline (11). Yield 54 per cent; b.p. 100-102°C/260 Pa. ¹H NMR (400 MHz, CDCl₃) $\delta =$ 3·78 (br s, 2H), 6·59 (d, J = 8.5 Hz, 2H), 7·37 (d, J =8·5 Hz, 2H). EI MS m/z (relative intensity, per cent): 443 [M]⁺ (12), 124 (100), 69 (30).

4-(Perfluorooctylthio)aniline (**1 m**). Yield 51 per cent; b.p. 99–101°C/130 Pa. m.p. 37·0–38·0°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 3.87$ (br s, 2 H), 6·62 (d, J = 8.6 Hz, 2 H), 7·39 (d, J = 8.6 Hz, 2 H). EI MS m/z (relative intensity, per cent): 543 [M]⁺ (45), 124 (100).

4.3. Synthesis of 4-nitroazobenzenes 2b-m

To an acetic acid solution (10 ml) of aniline 1 (0.80 mmol) was added 4-nitrosonitrobenzene (122 mg, 0.80 mmol) and stirred overnight at room temperature. The resulting precipitate was filtered, washed with water, dried and purified by column chromatography. Physical and spectral data are shown below.

4-Butyl-4'-nitroazobenzene (**2b**). Yield 98 per cent; m.p. 77–78°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 0.95$ (t, J = 7.4 Hz, 3 H), 1.39 (sextet, J = 7.4 Hz, 2 H), 1.66 (quintet, J = 7.4 Hz, 2 H), 2.71 (t, J = 7.4 Hz, 2 H), 7.35 (d, J =8.5 Hz, 2 H), 7.89 (d, J = 8.5 Hz, 2 H), 8.00 (d, J = 9.2 Hz, 2 H), 8.36 (d, J = 9.2 Hz, 2 H). EI MS m/z (relative intensity, per cent): 283 [M]⁺ (53), 161 (26), 133 (100).

4-Nitro-4'-(perfluorobutyl)azobenzene (2 c). Yield 60 per cent; m.p. 143–144°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 7.80$ (d, J = 8.4 Hz, 2 H), 8.07 (d, J = 8.4 Hz 2 H), 8.09 (d, J = 9.2 Hz, 2 H), 8.42 (d, J = 9.2 Hz, 2 H). EI MS m/z(relative intensity, per cent): 445 [M]⁺ (54), 150 (39), 122 (100).

4-Nitro-4'-(perfluorohexyl)azobenzene (**2d**). Yield 73 per cent; m.p. 152–153°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 7.80$ (d, J = 8.6 Hz, 2 H), 8.07 (d, J = 8.6 Hz, 2 H), 8.10(d, J = 9.0 Hz, 2 H), 8.42 (d, J = 9.0 Hz, 2 H). EI MS m/z(relative intensity, per cent): 545 [M]⁺ (5), 395 (100).

4-Nitro-4'-(perfluorooctyl)azobenzene (2 e). Yield 83 per cent; m.p. 157–158°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 7.80$ (d, J = 9.2 Hz, 2 H), 8.09 (d, J = 9.2 Hz, 4 H), 8.42 (d, J = 9.2 Hz, 2 H). EI MS m/z (relative intensity, per cent): 645 [M]⁺ (18), 122 (100), 76 (34).

4-Butylthio-4'-nitroazobenzene (**2**f). Yield 56 per cent; m.p. 87–89°C. ¹H NMR (400 MHz, CDCl₃) δ =0.97 (t, J=7.3 Hz, 3 H), 1.47–1.55 (m, 2 H), 1.67–1.76 (m, 2 H), 3.04 (t, J = 7.3 Hz, 2 H), 7.39 (d, J = 8.8 Hz, 2 H), 7.90 (d, J = 8.8 Hz, 2 H), 8.01 (d, J = 9.2 Hz, 2 H), 8.37 (d, J = 9.2 Hz, 2 H). EI MS m/z (relative intensity, per cent): 315 [M]⁺ (82), 193 (15), 165 (100).

4-(Hexylthio)-4'-nitroazobenzene (**2**g). Yield 87 per cent; m.p. 72–74°C. ¹H NMR (400 MHz, CDCl₃) $\delta =$ 0.91 (t, J = 7.3 Hz, 3 H), 1.31–1.53 (m, 6 H), 1.74 (sextet, J = 7.3 Hz, 2 H), 3.03 (t, J = 7.3 Hz, 2 H), 7.39 (d, J =8.5 Hz, 2 H), 7.89 (d, J = 8.5 Hz, 2 H), 8.00 (d, J = 9.2 Hz, 2 H), 8.37 (d, J = 9.2 Hz, 2 H). EI MS m/z (relative intensity, per cent): 343 [M]⁺ (60), 193 (69), 122 (39), 55 (100).

4-Nitro-4'-(octylthio)azobenzene (**2h**). Yield 83 per cent; m.p. 63–64°C. ¹H NMR (400 MHz, CDCl₃) $\delta =$ 0.87 (t, J = 7.5 Hz, 3 H), 1.26–1.52 (m, 10 H), 1.73 (sextet, J = 7.5 Hz, 2 H), 3.03 (t, J = 7.5 Hz, 2 H), 7.39 (d, J =8.6 Hz, 2 H), 7.89 (d, J = 8.6 Hz, 2 H), 8.00 (d, J = 8.9 Hz, 2 H), 8.37 (d, J = 8.9 Hz, 2 H). EI MS m/z (relative intensity, per cent): 371 [M]⁺ (56), 69 (100).

4-Nitro-4'-(1*H*,1*H*,2*H*,2*H*-perfluorohexylthio)azobenzene (**2i**). Yield 83 per cent; m.p. 119–121°C. ¹H NMR (400 MHz, CDCl₃) δ = 2·49 (tt, *J* = 16·5 and 8·2 Hz, 2 H), 3·26 (tt, *J* = 8·2 and 3·2 Hz, 2 H), 7·45 (d, *J* = 8·8 Hz, 2 H), 7·96 (d, *J* = 8·8 Hz, 2 H), 8·03 (d, *J* = 9·1 Hz, 2 H), 8·39 (d, *J* = 9·1 Hz, 2 H). EI MS *m/z* (relative intensity, per cent): 505 [M]⁺ (52), 355 (100), 122 (22).

4-Nitro-4'-(1*H*,1*H*,2*H*,2*H*-perfluorooctylthio)azobenzene (**2j**). Yield 74 per cent; m.p. 129–130°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 2.49$ (tt, J = 16.8 and 8.1 Hz, 2 H), 3.26 (tt, J = 8.1 and 3.1 Hz, 2 H), 7.45 (d, J = 8.5 Hz, 2 H), 7.96 (d, J = 8.5 Hz, 2 H), 8.03 (d, J = 9.0 Hz, 2 H), 8.39 (d, J = 9.0 Hz, 2 H). EI MS m/z (relative intensity, per cent): 605 [M]⁺ (30), 455 (100), 122 (63).

4-Nitro-4'-(perfluorobutylthio)azobenzene (2 k). Yield 63 per cent; m.p. 141–142°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 7.85$ (d, J = 8.4 Hz, 2 H), 8.01 (d, J = 8.4 Hz, 2 H), 8.07 (d, J = 8.8 Hz, 2 H), 8.41 (d, J = 8.8 Hz, 2 H). EI MS m/z (relative intensity, per cent): 477 [M]⁺ (57), 327 (90), 122 (72), 108 (100).

4-Nitro-4'-(perfluorohexylthio)azobenzene (21). Yield 90 per cent; m.p. 141–143°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 7.85$ (d, J = 8.4 Hz, 2 H), 8.01 (d, J = 8.4 Hz, 2 H), 8.07 (d, J = 9.0 Hz, 2 H), 8.41 (d, J = 9.0 Hz, 2 H). EI MS m/z (relative intensity, per cent): 577 [M]⁺ (36), 108 (100), 76 (47).

4-Nitro-4'-(perfluorooctylthio)azobenzene (**2** m). Yield 64 per cent; m.p. 161–163°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 7.85$ (d, J = 8.4 Hz, 2 H), 8.01 (d, J = 8.4 Hz, 2 H), 8.07 (d, J = 8.8 Hz, 2 H), 8.41 (d, J = 8.8 Hz, 2 H). EI MS m/z (relative intensity, per cent): 677 [M]⁺ (48), 527 (100), 108 (96).

4.4. Synthesis of 4-(Arylazo)anilines 3 b-m

To an 85 per cent ethanol solution (20 ml) of 4-nitroazobenzene 2 (0.5 mmol) was added an aqueous solution (5 ml) of sodium sulphide (1 mmol) and heated at reflux for 1 h. After the reaction, the mixture was poured into water (30 ml). The resulting precipitate was filtered, washed with water, dried and purified by column chromatography. Physical and spectral data are shown below.

4-(4-Butylphenylazo)aniline (**3b**). Yield 62 per cent; m.p. 119–120°C. ¹H NMR (400 MHz, CDCl₃) δ =0.93 (t, J=7.3 Hz, 3 H), 1.37 (sextet, J=7.3 Hz, 2 H), 1.63 (quintet, J=7.3 Hz, 2 H), 2.67 (t, J=7.3 Hz, 2 H), 4.76 (s, 2 H), 6.73 (d, J=9.2 Hz, 2 H), 7.28 (d, J=8.5 Hz, 2 H), 7.76 (d, J=8.5 Hz, 2 H) 7.84 (d, J=9.2 Hz, 2 H). EI MS *m/z* (relative intensity, per cent): 253 [M]⁺ (44), 92 (100).

4-[4-(Perfluorobutyl)phenylazo]aniline (**3** c). Yield 56 per cent; m.p. 111–113°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 4.16$ (br s, 2 H), 6.75 (d, J = 8.4 Hz, 2 H), 7.69 (d, J = 8.4 Hz, 2 H), 7.84 (d, J = 8.8 Hz, 2 H), 7.93 (d, J = 8.8 Hz, 2 H). EI MS m/z (relative intensity, per cent): 415 [M]⁺ (22), 120 (32), 92 (100).

4-[4-(Perfluorohexyl)phenylazo]aniline (3d). Yield 41 per cent; m.p. 91–93°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 4.02$ (s, 2 H), 6.67 (d, J = 8.8 Hz, 2 H), 7.62 (d, J = 8.5 Hz, 2 H), 7.76 (d, J = 8.8 Hz, 2 H), 7.85 (d, J = 8.5 Hz, 2 H). EI MS m/z (relative intensity, per cent): 515 [M]⁺ (37), 120 (51), 92 (100).

4-[4-(Perfluorooctyl)phenylazo]aniline (3e). Yield 42 per cent; m.p. 110–112°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 4.05$ (s, 2 H), 7.62 (d, J = 8.7 Hz, 2 H), 7.75 (d, J = 8.9 Hz, 2 H), 7.76 (d, J = 8.9 Hz, 2 H), 7.85 (d, J = 8.7 Hz, 2 H). EI MS m/z (relative intensity, per cent): 615 [M]⁺ (5), 120 (35), 92 (100).

4-[4-(Butylthio)phenylazo]aniline (**3f**). Yield 56 per cent; m.p. 87–90°C. ¹H NMR (400 MHz, CDCl₃) $\delta =$ 0.94 (t, J = 7.1 Hz, 3 H), 1.41–1.54 (m, 2 H), 1.63–1.74 (m, 2 H), 2.99 (t, J = 7.1 Hz, 2 H), 4.03 (br s, 2 H), 6.73 (d, J = 8.4 Hz, 2 H), 7.37 (d, J = 8.6 Hz, 2 H), 7.77 (d, J =8.4 Hz, 2 H), 7.79 (d, J = 8.6 Hz, 2 H). EI MS m/z (relative intensity, per cent): 285 [M]⁺ (42), 92 (100).

4-[4-(Hexylthio)phenylazo]aniline (**3 g**). Yield 74 per cent; m.p. 62–65°C. ¹H NMR (400 MHz, CDCl₃) $\delta =$ 0.89 (t, J = 7.1 Hz, 3 H), 1.26–1.47 (m, 6 H), 1.68 (sextet, J = 7.1 Hz, 2 H), 2.99 (t, J = 7.1 Hz, 2 H), 4.05 (s, 2 H), 6.74 (d, J = 8.5 Hz, 2 H), 7.37 (d, J = 8.5 Hz, 2 H), 7.77 (d, J = 8.1 Hz, 2 H), 7.80 (d, J = 8.1 Hz, 2 H). EI MS m/z(relative intensity, per cent): 313 [M]⁺ (26), 120 (37), 92 (100).

4-[4-(Octylthio)phenylazo]aniline (**3h**). Yield 77 per cent; m.p. 66–68°C. ¹H NMR (400 MHz, CDCl₃) $\delta =$ 0·88 (t, J = 7.3 Hz, 3 H), 1·26–1·65 (m, 10 H), 1·69 (sextet, J = 7.3 Hz, 2 H), 2·97 (t, J = 7.3 Hz, 2 H), 4·03 (s, 2 H), 6·73 (d, J = 8.5 Hz, 2 H), 7·37 (d, J = 8.5 Hz, 2 H), 7·77 (d, J = 8.5 Hz, 2 H), 7·79 (d, J = 8.5 Hz, 2 H). EI MS m/z(relative intensity, per cent): 341 [M]⁺ (30), 92 (100).

4-[4-(1*H*,1*H*,2*H*,2*H*-Perfluorohexylthio)phenylazo]aniline (**3i**). Yield 66 per cent; m.p. 91–93°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 2.44$ (tt, J = 16.6 and 8.1 Hz, 2 H), 3.19 (tt, J = 8.1 and 2.9 Hz, 2 H), 4.06 (br s, 2 H), 6.74 (d, J = 8.9 Hz, 2 H), 7.43 (d, J = 8.7 Hz, 2 H), 7.80 (d, J =8.9 Hz, 2 H), 7.82 (d, J = 8.7 Hz, 2 H). EI MS m/z (relative intensity, per cent): 475 [M]⁺ (60), 120 (40), 92 (100).

4-[4-(1*H*,1*H*,2*H*,2*H*-Perfluorooctylthio)phenylazo]aniline (**3j**). Yield 56 per cent; m.p. 114–115°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 2.44$ (tt, J = 17.1 and 8.1 Hz, 2 H), 3.19 (tt, J = 8.1 and 3.1 Hz, 2 H), 4.06 (br s, 2 H), 6.74 (d, J = 8.9 Hz, 2 H), 7.43 (d, J = 8.5 Hz, 2 H), 7.80 (d, J =8.9 Hz, 2 H), 7.82 (d, J = 8.5 Hz, 2 H). EI MS *m/z* (relative intensity, per cent): 575 [M]⁺ (38), 120 (39), 92 (100).

4-[4-(Perfluorobutylthio)phenylazo]aniline (3k). Yield 94 per cent; m.p. 90–93°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 4.13$ (br s, 2 H), 6.74 (d, J = 8.9 Hz, 2 H), 7.75 (d, J = 8.4 Hz, 2 H), 7.83 (d, J = 8.9 Hz, 2 H), 7.86 (d, J =8.4 Hz, 2 H). EI MS m/z (relative intensity, per cent): 447 [M]⁺ (19), 120 (35), 92 (100).

4-[4-(Perfluorohexylthio)phenylazo]aniline (31). Yield 41 per cent; m.p. 110–111°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 4.02$ (br s, 2 H), 6.67 (d, J = 8.8 Hz, 2 H), 7.62 (d, J = 8.5 Hz, 2 H), 7.76 (d, J = 8.8 Hz, 2 H), 7.85 (d, J = 8.5 Hz, 2 H). EI MS m/z (relative intensity, per cent): 547 [M]⁺ (76), 120 (33), 92 (100).

4-[4-(Perfluorooctylthio)phenylazo]aniline (3m). Yield 57 per cent; m.p. 128–130°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 6.33$ (br s, 2 H), 6.68 (d, J = 8.7 Hz, 2 H), 7.70 (d, J = 8.7 Hz, 2 H), 7.81–7.83 (m, 4 H). EI MS m/z (relative intensity, per cent): 647 [M]⁺ (19), 120 (45), 92 (100).

4.5. Synthesis of 4-[4-(alkylsulphonyl- and perfluoroalkylsulphonyl) phenylazo]anilines <math>3n-s

To an acetone-water mixed solution (10 ml) of aniline 1 (2 mmol) was added concentrated hydrochloric acid (6 mmol). After cooling the solution to 0°C, 20 per cent aqueous sodium nitrite solution was added (2 mmol). After 15 min, an aqueous solution of sodium anilinome-thanesulphonate (2 mmol) was added and stirred for 1 h. This reaction mixture was then poured into water. After filtration, the product was heated at reflux in an aqueous solution (100 ml) of sodium hydroxide (4 g) for 5 h. After cooling the mixture, the product was extracted with dichloromethane and purified by column chromatography. Physical and spectral data are shown below.

4-[4-(Butylsulphonyl)phenylazo]aniline (**3n**). Yield 48 per cent; m.p. 154–155°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 0.90$ (t, J = 7.9 Hz, 3 H), 1.40 (sextet, J =7.9 Hz, 2 H), 1.71 (quintet, J = 7.9 Hz, 2 H), 3.12 (t, J =7.9 Hz, 2 H), 4.22 (br s, 2 H), 6.75 (d, J = 8.5 Hz, 2 H), 7.85 (d, J = 8.5 Hz, 2 H), 7.96 (d, J = 8.5 Hz, 2 H), 8.00 (d, J = 8.5 Hz, 2 H). EI MS m/z (relative intensity, per cent): 317 [M]⁺ (88), 120 (100), 92 (98).

4-[4-(Hexylsulphonyl)phenylazo]aniline (**30**). Yield 54 per cent; m.p. 173–174°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 0.85$ (t, J = 7.4 Hz, 3 H), 1.24–1.27 (m, 4 H), 1.34 (q, J = 7.4 Hz, 2 H), 1.72 (quintet, J = 7.4 Hz, 2 H), 3.12 (t, J = 7.9 Hz, 2 H), 4.21 (br s, 2 H), 6.75 (d, J =8.7 Hz, 2 H), 7.85 (d, J = 8.8 Hz, 2 H), 7.95 (d, J = 8.7 Hz, 2 H), 8.01 (d, J = 8.8 Hz, 2 H). EI MS *m/z* (relative intensity, per cent): 345 [M]⁺ (23), 120 (63), 92 (100).

4-[4-(1*H*,1*H*,2*H*,2*H*-Perfluorohexylsulphonyl)phenylaxo]aniline (**3 p**). Yield 50 per cent; m.p. 197–198°C. ¹H NMR (400 MHz, CDCl₃) δ = 2·62 (tt, *J* = 18·0 and 8·2 Hz, 2 H), 3·37 (tt, *J* = 8·2 and 4·8 Hz, 2 H), 4·22 (br s, 2 H), 6·76 (d, *J* = 8·8 Hz, 2 H), 7·86 (d, *J* = 8·8 Hz, 2 H), 8·02 (d, *J* = 3·0 Hz, 4 H). EI MS *m/z* (relative intensity, per cent): 507 [M]⁺ (18), 120 (42), 92 (100).

4-[4-(Perfluorobutylsulphonyl)phenylazo]aniline (3q). Yield 50 per cent; m.p. 90–92°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 4.28$ (br s, 2 H), 6.75 (d, J = 8.8 Hz, 2 H), 7.87 (d, J = 8.8 Hz, 2 H), 8.02 (d, J = 8.7 Hz, 2 H), 8.12 (d, J = 8.7 Hz, 2 H). EI MS m/z (relative intensity, per cent): 479 [M]⁺ (7), 120 (25), 92 (100).

4-[4-(Perfluorohexylsulphonyl)phenylazo]aniline (3r). Yield 27 per cent; m.p. 133–135°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 4.27$ (br s, 2 H), 6.75 (d, J = 8.8 Hz, 2 H), 7.87 (d, J = 8.8 Hz, 2 H), 8.03 (d, J = 8.4 Hz, 2 H), 8.13 (d, J = 8.4 Hz, 2 H). EI MS m/z (relative intensity, per cent): 579 [M]⁺ (30), 120 (55), 92 (100). 4-[4-(Perfluorooctylsulphonyl)phenylazo]aniline (**3** s). Yield 44 per cent; m.p. 160–161°C. ¹H NMR (400 MHz, CDCl₃) δ = 4·27 (br s, 2 H), 6·75 (d, J = 8·7 Hz, 2 H), 7·87 (d, J = 8·7 Hz, 2 H), 8·03 (d, J = 8·7 Hz, 2 H), 8·13 (d, J = 8·7 Hz, 2 H). EI MS m/z (relative intensity, per cent): 678 [M]⁺ (1), 120 (45), 92 (100), 65 (20).

4.6. Synthesis of 4-arylazo-1-naphthylamines 6

To an aqueous solution (50 ml) of aniline 1 (10 mmol) and concentrated hydrochloric acid (2.5 ml, 30 mmol) was added a 20 per cent aqueous solution of sodium nitrite (0.7 g, 10 mmol) at 0°C. The mixture was stirred for 3 h at 0°C. To the suspension was added an acetic acid-water (AcOH: $H_2O=2:1$) mixed solution (30 ml) of 1-naphthylamine (1.5 g, 10 mmol) and stirred overnight at 0-20°C. After the reaction, the suspension was neutralized with a dilute aqueous sodium hydroxide solution. The resulting precipitate was filtered, dried, purified by column chromatography (SiO₂, CHCl₃), and recrystallized from hexane. Physical and spectral data are shown below.

4-Phenylazo-1-naphthylamine (**6** a). Yield 73 per cent; m.p. $122-124^{\circ}C$ (lit. [12] $123^{\circ}C$).

4-(4-Butylphenylazo)-1-naphthylamine (**6**b). Yield 80 per cent; m.p. 64–66°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 0.95$ (t, J = 7.0 Hz, 3 H), 1.35-1.43 (m, 2 H), 1.63-1.68(m, 2 H), 2.69 (t, J = 7.0 Hz, 2 H), 4.55 (s, 2 H), 6.81 (d, J = 8.4 Hz, 1 H), 7.32 (d, J = 7.3 Hz, 2 H), 7.53-7.56 (m, 1 H), 7.60-7.63 (m, 1 H), 7.81 (d, J = 8.4 Hz, 1 H), 7.89(d, J = 7.3 Hz, 2 H), 7.90 (d, J = 8.1 Hz, 1 H), 9.04 (d, J =8.1 Hz, 1 H). EI MS m/z (relative intensity, per cent): 303 [M]⁺ (63), 142 (100).

4-[4-(Perfluorobutyl)phenylazo]-1-naphthylamine (6c). Yield 23 per cent; m.p. 140-143°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 4.72$ (br s, 2H), 6.83 (d, J =8.4 Hz, 1 H), 7.54–7.60 (m, 1 H), 7.64–7.71 (m, 1 H), 7.74 (d, J = 8.8 Hz, 2 H), 7.83 (d, J = 8.4 Hz, 1 H), 7.99 (d, J =8.4 Hz, 1 H), 8.06 (d, J = 8.8 Hz, 2 H), 9.05 (d, J = 8.4 Hz, 1 H). EI MS m/z (relative intensity, per cent): 465 [M]⁺ (55), 142 (100).

4-[4-(Butylthio)phenylazo]-1-naphthylamine (6f). Yield 83 per cent; m.p. 79–81°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 0.95$ (t, J = 7.4 Hz, 3 H), 1.49 (sextet, J = 7.4 Hz, 2 H), 1.71 (quintet, J = 7.4 Hz, 2 H), 3.01 (t, J = 7.4 Hz, 2 H), 4.60 (s, 2 H), 6.82 (d, J = 7.3 Hz, 1 H), 7.42 (d, J = 8.5 Hz, 2 H), 7.56 (t, J = 7.3 Hz, 1 H), 7.63 (t, J = 7.3 Hz, 1 H), 7.92 (d, J = 8.5 Hz, 2 H), 9.04 (d, J = 7.3 Hz, 1 H). EI MS m/z (relative intensity, per cent): 335 [M]⁺ (95), 142 (100).

4-[4-(1*H*,1*H*,2*H*,2*H*-Perfluorohexylthio)phenylazo]-1-naphthylamine (**6i**). Yield 81 per cent; m.p. 89–91°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 2.46$ (tt, J = 16.5 and 8.2 Hz, 2 H), 3.21 (tt, J = 8.2 and 3.1 Hz, 2 H), 4.46 (s, 2 H), 6.82 (d, J = 7.9 Hz, 1 H), 7.47 (d, J = 8.9 Hz, 2 H), 7.55 (t, J = 7.9 Hz, 1 H), 7.65 (t, J = 7.9 Hz, 1 H), 7.83 (d, J = 7.9 Hz, 1 H), 7.94 (d, J = 7.9 Hz, 1 H), 7.95 (d, J =8.9 Hz, 2 H), 9.04 (d, J = 7.9 Hz, 1 H). EI MS m/z (relative intensity, per cent): 525 [M]⁺ (97), 142 (100), 69 (16).

4-[4-(Perfluorobutylthio)phenylazo]-1-naphthylamine (6k). Yield 55 per cent; m.p. 146–148°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 4.72$ (br s, 2 H), 6.82 (d, J = 8.2 Hz, 1 H), 7.53–7.59 (m, 1 H), 7.64–7.69 (m, 1 H), 7.80 (d, J = 8.5 Hz, 2 H), 7.82 (d, J = 8.2 Hz, 1 H), 7.98 (d, J = 8.5 Hz, 2 H), 7.99 (d, J = 8.2 Hz, 1 H), 9.04 (d, J =8.2 Hz, 1 H). EI MS m/z (relative intensity, per cent): 497 [M]⁺ (37), 142 (100).

4-[4-(Perfluorooctylthio)phenylazo]-1-naphthylamine (6m). Yield 30 per cent; m.p. 147–149°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 4.73$ (br s, 2 H), 6.82 (d, J = 8.4 Hz, 1 H), 7.53–7.59 (m, 1 H), 7.63–7.69 (m, 1 H), 7.79 (d, J = 8.8 Hz, 2 H), 7.84 (d, J = 8.4 Hz, 1 H), 7.98 (d, J = 8.4 Hz, 1 H), 7.99 (d, J = 8.8 Hz, 2 H), 9.04 (d, J =8.4 Hz, 1 H). EI MS m/z (relative intensity, per cent): 697 [M]⁺ (24), 142 (100).

4-[4-(Butylsulphonyl)phenylazo]-1-naphthylamine (6n). Yield 46 per cent; m.p. 125–126°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 0.90$ (t, J = 7.7 Hz, 3 H), 1.41 (sextet, J = 7.7 Hz, 2 H), 1.73 (quintet, J = 7.7 Hz, 2 H), 3.14 (t, J = 7.7 Hz, 2 H), 4.83 (br s, 2 H), 6.80 (d, J =8.3 Hz, 1 H), 7.55 (t, J = 7.0 Hz, 1 H), 7.67 (t, J = 7.0 Hz, 1 H), 7.82 (d, J = 8.3 Hz, 1 H), 7.98–8.05 (m, 5 H), 9.03 (d, J = 8.3 Hz, 1 H). EI MS m/z (relative intensity, per cent): 367 [M]⁺ (33), 142 (100).

4-[4-(1*H*,1*H*,2*H*,2*H*-Perfluorohexylsulphonyl)phenylazo]-1-naphthylamine (**6 p**). Yield 54 per cent; m.p. 184–185°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 2.64$ (tt, J = 17.4 and 8.3 Hz, 2 H), 3.37 (tt, J = 8.3 and 3.5 Hz, 2 H), 4.83 (br s, 2 H), 6.83 (d, J = 8.3 Hz, 1 H), 7.41-7.47(m, 1 H), 7.55-7.61 (m, 1 H), 7.70 (d, J = 8.7 Hz, 1 H), 7.79-7.85 (m, 1 H), 8.03-8.17 (m, 4 H), 9.04 (d, J = 8.3 Hz, 1 H). EI MS *m/z* (relative intensity, per cent): 557 [M]⁺ (14), 142 (100).

4-[4-(Perfluorobutylsulphonyl)phenylazo]-1naphthylamine (**6**q). Yield 50 per cent; m.p. 114–115°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 4.92$ (br s, 2 H), 6.86 (d, J = 8.2 Hz, 1 H), 7.55–7.65 (m, 1 H), 7.67–7.77 (m, 1 H), 7.84 (d, J = 9.4 Hz, 1 H), 8.06 (d, J = 9.4 Hz, 1 H), 8.16 (d, J = 6.7 Hz, 2 H), 8.21 (d, J = 6.7 Hz, 2 H), 9.04 (d, J = 8.2 Hz, 1 H). EI MS m/z (relative intensity, per cent): 529 [M]⁺ (16), 142 (100).

4.7. Synthesis of disazo dyes 4, 5, 7 and 8

To a DMF solution (20 ml) of 4-substituted arylamine 3 or 6 (3 mmol) and concentrated hydrochloric acid (0.8 ml, 9 mmol) was added an aqueous solution of sodium nitrite (0.2 g, 3 mmol) and stirred for 2 h at 0°C. To the suspension was added an aqueous solution (100 ml) of coupling component (3 mmol) and stirred overnight at 0-20°C. After the reaction, the resulting precipitate was filtered, dried, purified by column chromatography (SiO₂, CHCl₃ then AcOEt: $C_6H_{14} = 1:4$), and crystallized from a chloroform-hexane mixed solution. Physical and spectral data are shown below.

4-[4-(Phenylazo)phenylazo]-N,N-diethylaniline (4a). Yield 75 per cent; m.p. 194–195°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 1.24$ (t, J = 7.0 Hz, 6H), 3.47 (q, J = 7.0 Hz, 4H), 6.64 (d, J = 9.2 Hz, 2H), 7.47–7.56 (m, 3H), 7.90 (d, J = 9.2 Hz, 2H), 7.93–8.06 (m, 6H). EI MS m/z (relative intensity, per cent): 357 [M]⁺ (100), 342 (59), 148 (90), 77 (54).

4-[4-(4-Butylphenylazo)phenylazo]-*N*,*N*-diethylaniline (**4b**). Yield 90 per cent; m.p. 165–166°C (lit. [13] 163°C).

4-[4-[4-(Perfluorobutyl)phenylazo]phenylazo]-N,Ndiethylaniline (4c). Yield 78 per cent; m.p. 129–130°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 1.26$ (t, J = 7.0 Hz, 6 H), 3.48 (q, J = 7.0 Hz, 4 H), 6.75 (d, J = 9.2 Hz, 2 H), 7.76 (d, J = 8.5 Hz, 2 H), 7.90 (d, J = 9.2 Hz, 2 H), 7.98 (d, J =8.5 Hz, 2 H), 8.01 (d, J = 8.6 Hz, 2 H), 8.07 (d, J = 8.6 Hz, 2 H). EI MS m/z (relative intensity, per cent): 575 [M]⁺ (49), 560 (32), 148 (100). Elemental analysis calculated for C₂₆H₂₂F₉N₅: C, 54.27; H, 3.85; N, 12.17. Found: C, 54.16: H, 3.88; N, 12.48.

4-[4-[4-(Perfluorohexyl)phenylazo]phenylazo]-*N*,*N*diethylaniline (**4d**). Yield 85 per cent; m.p. 153–155°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 1.23$ (t, J = 7.1 Hz, 6 H), 3.45 (q, J = 7.1 Hz, 4 H), 6.72 (d, J = 9.2 Hz, 2 H), 7.74 (d, J = 9.2 Hz, 2 H), 7.85 (d, J = 8.9 Hz, 2 H), 7.90 (d, J =8.9 Hz, 2 H), 7.98 (d, J = 8.9 Hz, 2 H), 8.05 (d, J = 8.9 Hz, 2 H). EI MS *m*/*z* (relative intensity, per cent): 675 [M]⁺ (32), 660 (20), 150 (100). Elemental analysis calculated for C₂₈H₂₂F₁₃N₅: C, 49.79; H, 3.28; N, 10.37. Found: C, 50.01; H, 3.04; N, 10.09.

4-[4-[4-(Perfluorooctyl)phenylazo]phenylazo]-*N*,*N*diethylaniline (4e). Yield 82 per cent; m.p. 143–145°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 1.26$ (t, J = 7.0 Hz, 6 H), 3.48 (q, J = 7.0 Hz, 4 H), 6.75 (d, J = 8.7 Hz, 2 H), 7.76 (d, J = 8.7 Hz, 2 H), 7.91 (d, J = 9.2 Hz, 2 H), 7.98 (d, J =8.9 Hz, 2 H), 8.01 (d, J = 9.2 Hz, 2 H), 8.07 (d, J = 8.9 Hz, 2 H). EI MS *m*/*z* (relative intensity, per cent): 775 [M]⁺ (48), 760 (23), 176 (16), 148 (100), 76 (16). Elemental analysis calculated for C₃₀H₂₂F₁₇N₅: C, 46.46; H, 2.86; N, 9.03. Found: C, 46.68; H, 2.80; N, 9.21.

4-[4-[4-(Butylthio)phenylazo]phenylazo]-N,Ndiethylaniline (**4f**). Yield 76 per cent; m.p. 163–166°C. ¹H NMR (400 MHz, CDCl₃) δ = 0.96 (t, J = 7.3 Hz, 3 H), 1.24 (t, J = 7.1 Hz, 6 H), 1.45–1.54 (m, 2 H), 1.65–1.74 (m, 2 H), 3.02 (t, J = 7.3 Hz, 2 H), 3.47 (q, J = 7.1 Hz, 4 H), 6.74 (d, J = 9.3 Hz, 2 H), 7.39 (d, J = 8.6 Hz, 2 H), 7.87 (d, J = 8.6 Hz, 2 H), 7.89 (d, J = 9.3 Hz, 2 H), 7.94–8.03 (m, 4 H). EI MS m/z (relative intensity, per cent): 445 [M]⁺ (100), 148 (82). Elemental analysis calculated for $C_{26}H_{31}N_5S$: C, 70·08; H, 7·01; N, 15·72. Found: C, 69·92; H, 7·02; N, 15·78.

4-[4-[4-(Hexylthio)phenylazo]phenylazo]-N,N-diethylaniline (**4g**). Yield 89 per cent; m.p. 136–138°C. ¹H NMR (400 MHz, CDCl₃) δ = 0.90 (t, J = 7.3 Hz, 3 H), 1·22–1·56 (m, 12 H), 1·72 (sextet, J = 7.3 Hz, 2 H), 3·01 (t, J = 7·3 Hz, 2 H), 3·47 (q, J = 7·1 Hz, 4 H), 6·74 (d, J = 8·9 Hz, 2 H), 7·39 (d, J = 8·9 Hz, 2 H), 7·87 (d, J = 8·9 Hz, 2 H), 7·89 (d, J = 8·9 Hz, 2 H), 7·95 (d, J = 8·9 Hz, 2 H), 8·01 (d, J = 8·9 Hz, 2 H). EI MS m/z (relative intensity, per cent): 473 [M]⁺ (71), 458 (26), 148 (59), 92 (100). Elemental analysis calculated for C₂₈H₃₅N₅S: C, 71·00; H, 7·45; N, 14·78. Found: C, 71·25; H, 7·30; N, 14·88.

4-[4-[4-(Octylthio)phenylazo]phenylazo]-*N*,*N*diethylaniline (**4h**). Yield 70 per cent; m.p. 127–129°C. ¹H NMR (400 MHz, CDCl₃) δ = 0.89 (t, *J* = 7.5 Hz, 3 H), 1·23–1·60 (m, 16 H), 1·69 (sextet, *J* = 7.5 Hz, 2 H), 3·01 (t, *J* = 7.5 Hz, 2 H), 3·48 (q, *J* = 7.0 Hz, 4 H), 6·79 (d, *J* = 7·8 Hz, 2 H), 7·39 (d, *J* = 7.8 Hz, 2 H), 7·87 (d, *J* = 9.0 Hz, 2 H), 7·92 (d, *J* = 8·9 Hz, 2 H), 7·97 (d, *J* = 9.0 Hz, 2 H), 8·02 (d, *J* = 8·9 Hz, 2 H). EI MS *m*/*z* (relative intensity, per cent): 501 [M]⁺ (100), 486 (32), 148 (76). Elemental analysis calculated for C₃₀H₃₉N₅S: C, 71·82; H, 7·84; N, 13·96. Found: C, 72·08; H, 7·83; N, 13·92.

4-[4-[4-[4-(1H,1H,2H,2H-Perfluorohexylthio)phenylazo]phenylazo]-N,N-diethylaniline (4i). Yield 61 per cent; m.p. 138–140°C. ¹H NMR (400 MHz, CDCl₃) $\delta =$ 1.25 (t, J = 7.0 Hz, 6 H), 2.47 (tt, J = 18.0 and 8.2 Hz, 2 H), 3.23 (tt, J = 8.2 and 2.9 Hz, 2 H), 3.48 (q, J = 7.0 Hz, 4 H), 6.75 (d, J = 9.2 Hz, 2 H), 7.45 (d, J = 8.4 Hz, 2 H), 7.90 (d, J = 9.2 Hz, 2 H), 7.92 (d, J = 8.4 Hz, 2 H), 7.97 (d, J = 8.4 Hz, 2 H)J = 8.8 Hz, 2 H), 8.03 (d, J = 8.8 Hz, 2 H). EI MS m/z(relative intensity, per cent): $635 [M]^+$ (40), 620 (18), calculated 148 (100). Elemental analysis for C₂₈H₂₆F₉N₅S: C, 52.91; H, 4.12; N, 11.02. Found: C, 53·26; H, 4·15; N, 11·29.

4-[4-[4-(1*H*,1*H*,2*H*,2*H*-Perfluorooctylthio)phenylazo]phenylazo]-*N*,*N*-diethylaniline (**4j**). Yield 58 per cent; m.p. 118⁻ 120°C. ¹H NMR (400 MHz, CDCl₃) δ = 1·25 (t, *J* = 7·3 Hz, 6 H), 2·47 (tt, *J* = 17·1 and 8·2 Hz, 2 H), 3·23 (tt, *J* = 8·2 and 3·1 Hz, 2 H), 3·48 (q, *J* = 7·3 Hz, 4 H), 6·74 (d, *J* = 9·2 Hz, 2 H), 7·45 (d, *J* = 9·2 Hz, 2 H), 7·90 (d, *J* = 9·2 Hz, 2 H), 7·92 (d, *J* = 8·5 Hz, 2 H), 7·96 (d, *J* = 9·2 Hz, 2 H), 8·03 (d, *J* = 8·5 Hz, 2 H). EI MS *m/z* (relative intensity, per cent): 735 [M]⁺ (95), 720 (38), 148 (100). Elemental analysis calculated for C₃₀H₂₆F₁₃N₅S: C, 48·98; H, 3·56; N, 9·52. Found: C, 49·47; H, 3·54; N, 9·25.

4-[4-[4-(Perfluorobutylthio)phenylazo]phenylazo]-N,N-diethylaniline (**4k**). Yield 92 per cent; m.p. 188– 189°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 1.25$ (t, J =7.0 Hz, 6 H), 3.48 (q, J = 7.0 Hz, 4 H), 6.74 (d, J = 9.3 Hz, 2 H), 7.81 (d, J = 8.5 Hz, 2 H), 7.90 (d, J = 9.3 Hz, 2 H), 7.96 (d, J = 8.5 Hz, 2 H), 7.97 (d, J = 9.0 Hz, 2 H), 8.05 (d, J = 9.0 Hz, 2 H). EI MS m/z (relative intensity, per cent): 607 [M]⁺ (48), 592 (27), 148 (100). Elemental analysis calculated for C₂₆H₂₂F₉N₅S: C, 51.40; H, 3.65; N, 11.53. Found: 51.55; H, 3.60; N, 11.56.

4-[4-(Perfluorohexylthio)phenylazo]phenylazo] N,N-diethylaniline (**41**). Yield 84 per cent; m.p. 180 182°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 1.25$ (t, J = 7.0 Hz, 6 H), 3.47 (q, J = 7.0 Hz, 4 H), 6.75 (d, J = 8.9 Hz, 2 H), 7.82 (d, J = 8.9 Hz, 2 H), 7.90 (d, J = 8.9 Hz, 2 H), 7.97 (d, J = 8.9 Hz, 2 H), 7.98 (d, J = 8.9 Hz, 2 H), 8.06 (d, J = 8.9 Hz, 2 H). EI MS m/z (relative intensity, per cent): 707 [M]⁺ (8), 148 (100), 133 (34), 108 (41). Elemental analysis calculated for C₂₈H₂₂F₁₃N₅S: C, 47.53; H, 3.13; N, 9.90. Found: C, 47.23; H, 3.01; N, 9.96.

4-[4-[4-(Perfluorooctylthio)phenylazo]phenylazo]-N,N-diethylaniline (**4m**). Yield 39 per cent; m.p. 192– 194°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 1.28$ (t, J =7.1 Hz, 6 H), 3.51 (q, J = 7.1 Hz, 4 H), 7.82 (d, J = 8.6 Hz, 2 H), 7.97 (d, J = 8.6 Hz, 2 H), 8.03–8.06 (m, 8 H). EI MS m/z (relative intensity, per cent): 807 [M]⁺ (6), 148 (100). Elemental analysis calculated for C₃₀H₂₂F₁₇N₅S: C, 44.62; H, 2.75; N, 8.67. Found: C, 44.58; H, 2.61; N, 8.47.

4-[4-[4-(Butylsulphonyl)phenylazo]phenylazo] N,N-diethylaniline (4n). Yield 42 per cent; m.p. 175-176°C. ¹H NMR (400 MHz, CDCl₃) δ =0·90 (t, J=7·2 Hz, 3 H), 1·25 (t, J=7·1 Hz, 6 H), 1·43 (sextet. J=7·2 Hz, 2 H), 1·73 (quintet, J=7·2 Hz, 2 H), 3·14 (t, J=7·2 Hz, 2 H), 3·48 (q, J=7·1 Hz, 4 H), 6·74 (d, J= 9·2 Hz, 2 H), 7·90 (d, J=9·2 Hz, 2 H), 7·98 (d, J=8·9 Hz, 2 H), 8·06-8·10 (m, 6 H). EI MS m/z (relative intensity, per cent): 477 [M]⁺ (100), 462 (59), 148 (96), 133 (33).

4 - [4 - [4 - (Hexylsulphonyl)phenylazo]phenylazo] N,N-diethylaniline (40). Yield 50 per cent; m.p. 179–180°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 0.86$ (t, J = 7.4 Hz, 3 H), 1·23–1·28 (m, 10 H), 1·36 (sextet, J =7·4 Hz, 2 H), 1·73 (quintet, J = 7.4 Hz, 2 H), 3·14 (t, J =7·4 Hz, 2 H), 3·47 (q, J = 6.7 Hz, 4 H), 6·74 (d, J = 9.2 Hz, 2 H), 7·90 (d, J = 9.2 Hz, 2 H), 7·98 (d, J = 8.8 Hz, 2 H), 8·06–8·10 (m, 6 H). EI MS m/z (relative intensity, per cent): 505 [M]⁺ (90), 490 (28), 148 (100), 133 (28).

4-[4-[4-(1*H*,1*H*,2*H*,2*H*-Perfluorohexylsulphonyl) phenylazo]phenylazo]-*N*,*N*-diethylaniline (4 **p**). Yield 15 per cent; m.p. 194–195°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 1.26$ (t, J = 7.0 Hz, 6 H), 2.64 (tt, J = 18.0 and 8.4 Hz, 2 H), 3.39 (tt, J = 8.4 and 4.0 Hz, 2 H), 3.49 (q, J = 7.0 Hz, 4 H), 6.75 (d, J = 9.2 Hz, 2 H), 7.91 (d, J = 9.2 Hz, 2 H), 7.99 (d, J = 8.7 Hz, 2 H), 8.10 (d, J = 8.7 Hz, 2 H), 8.11 (s, 4 H). EI MS *m/z* (relative intensity, per cent): 667 [M]⁺ (23), 148 (100). Elemental analysis calculated for C₂₈H₂₆F₉N₅O₂S: C, 50.38; H, 3.93; N, 10.49. Found: C, 50.58, H, 3.76; N, 10.23. 4- [4- [4- (Perfluorobutylsulphonyl)phenylazo] phenylazo]-*N*,*N*-diethylaniline (4**q**). Yield 9 per cent; m.p. 222-223°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 1.26$ (t, *J* = 7.0 Hz, 6 H), 3.48 (q, *J* = 7.0 Hz, 4 H), 6.75 (d, *J* = 9.1 Hz, 2 H), 7.91 (d, *J* = 9.1 Hz, 2 H), 7.99 (d, *J* = 8.8 Hz, 2 H), 8.10 (d, *J* = 8.8 Hz, 2 H), 8.15 (d, *J* = 9.0 Hz, 2 H), 8.20 (d, *J* = 9.0 Hz, 2 H). EI MS *m*/*z* (relative intensity, per cent): 639 [M]⁺ (100), 624 (45), 356 (26), 341 (45), 148 (82), 133 (25). Elemental analysis calculated for C₂₆H₂₂F₉N₅O₂S: C, 48.83; H, 3.47; N, 10.95. Found: C, 48.50; H, 3.36; N, 10.99.

4-[4-[4-(Perfluorohexylsulphonyl)phenylazo]phenylazo]-*N*,*N*-diethylaniline (**4r**). Yield 33 per cent; m.p. 199–200°C. ¹H NMR (400 MHz, CDCl₃) δ =1·26 (t, *J*=7·1 Hz, 6 H), 3·49 (q, *J*=7·1 Hz, 4 H), 6·75 (d, *J*= 9·3 Hz, 2 H), 7·91 (d, *J*=9·3 Hz, 2 H), 7·99 (d, *J*=8·8 Hz, 2 H), 8·10 (d, *J*=8·8 Hz, 2 H), 8·14 (d, *J*=8·5 Hz, 2 H), 8·20 (d, *J*=8·5 Hz, 2 H). EI MS *m/z* (relative intensity, per cent): 739 [M]⁺ (54), 341 (40), 148 (100). Elemental analysis calculated for C₂₈H₂₂F₁₃N₅O₂S: C, 45·47; H, 3·00; N, 9·47. Found: C, 45·28; H, 2·97; N, 9·24.

4-[4-[4-(Perfluorooctylsulphonyl)phenylazo]phenylazo]-N,N-diethylaniline (4s). Yield 6 per cent; m.p. 170–171°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 1.26$ (t, J = 7.0 Hz, 6 H), 3.49 (q, J = 7.0 Hz, 4 H), 6.75 (d, J =9.2 Hz, 2 H), 7.91 (d, J = 9.2 Hz, 2 H), 7.99 (d, J = 8.7 Hz,2 H), 8·10 (d, J = 8.7 Hz, 2 H), 8·15 (d, J = 8.2 Hz, 2 H), 8.20 (d, J = 8.2 Hz, 2 H). EI MS m/z (relative intensity, per cent): 839 [M]⁺ (70), 356 (39), 341 (51), 148 (100), 76 (55). Elemental analysis calculated for C₃₀H₂₂F₁₇N₅O₂S: C, 42.92; H, 2.64; N, 8.34. Found: C, 43.15; H, 2.57; N, 8.53.

4-[4-[4-(Perfluorobutylthio)phenylazo]phenylazo]- *N*,*N*-dimethylaniline (**5**k). Yield 58 per cent; m.p. 169–170°C. ¹H NMR (400 MHz, CDCl₃) δ =3·11 (s, 6 H), 6·77 (d, *J*=9·2 Hz, 2 H), 7·81 (d, *J*=8·3 Hz, 2 H), 7·93 (d, *J*=9·2 Hz, 2 H), 7·97 (d, *J*=8·3 Hz, 2 H), 8·03 (d, *J*=8·5 Hz, 2 H), 8·06 (d, *J*=8·5 Hz, 2 H). EI MS *m/z* (relative intensity, per cent): 579 [M]⁺ (81), 120 (100). Elemental analysis calculated for C₂₄H₁₈F₉N₅S: C, 49·74; H, 3·13; N, 12·09. Found: C, 49·89; H, 2·95; N, 11·98.

4-[4-[4-(Perfluorooctylthio)phenylazo]phenylazo]- N, N-dimethylaniline (**5** m). Yield 24 per cent; m.p. 149-150°C. ¹H NMR (400 MHz, CDCl₃) δ =3·12 (s, 6 H), 6·78 (d, J = 9·2 Hz, 2 H), 7·82 (d, J = 8·6 Hz, 2 H), 7·93 (d, J = 9·2 Hz, 2 H), 7·97 (d, J = 8·6 Hz, 2 H), 8·03 (d, J = 10·0 Hz, 2 H), 8·06 (d, J = 10·0 Hz, 2 H). EI MS m/z(relative intensity, per cent): 779 [M]⁺ (18), 120 (100). Elemental analysis calculated for C₂₈H₁₈F₁₇N₅S: C, 43·14; H, 2·33; N, 8·98. Found: C, 43·17; H, 2·14; N, 8·96.

4-[4-(Phenylazo)naphthylazo]-N,N-diethylaniline (7 a). Yield 52 per cent; m.p. 173-178°C (lit. [14] 170-171°C).

4-[4-(4-Butylphenylazo)naphthylazo]-N,N-diethy-

laniline (**7 b**). Yield 40 per cent; m.p. 130–134°C (lit. [14] 131·5–133°C).

4-[4-[4-(Perfluorobutyl)phenylazo]naphthylazo]per N,N-diethylaniline (**7 c**). Yield 15 cent: m.p. 113–114°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 1.25$ (t, J = 7.0 Hz, 6 H), 3.47 (q, J = 7.0 Hz, 4 H), 6.76 (d, J =8.8 Hz, 2 H), 7.68-7.72 (m, 2 H), 7.74 (d, J = 8.4 Hz, 1 H), 7.78 (d, J = 8.4 Hz, 1 H), 7.98 (d, J = 8.8 Hz, 2 H), 8.02 (d, J = 8.8 Hz, 2 H), 8.13 (d, J = 8.8 Hz, 2 H), 9.00-9.03 (m,2 H). EI MS m/z (relative intensity, per cent): 625 [M]⁺ (100), 610 (20), 302 (18), 176 (29), 133 (55). Elemental analysis calculated for $C_{30}H_{24}F_9N_5$: C, 57.60; H, 3.87; N, 11.20. Found: C, 57.44; H, 3.91; N, 11.04.

4-[4-(4-Butylthiophenylazo)naphthylazo]-N,Ndiethylaniline (7 f). Yield 50 per cent; m.p. 141–143°C. ¹H NMR (400 MHz, CDCl₃) δ = 0.97 (t, J = 7.4 Hz, 3 H), 1.27 (t, J = 7.1 Hz, 3 H), 1.51 (sextet, J = 7.4 Hz, 2 H), 1.73 (quintet, J = 7.4 Hz, 2 H), 3.05 (t, J = 7.4 Hz, 2 H), 3.50 (q, J = 7.1 Hz, 2 H), 6.79 (d, J = 9.2 Hz, 2 H), 7.44 (d, J = 8.6 Hz, 2 H), 7.70 (m, 2 H), 7.87 (d, J = 8.6 Hz, 1 H), 7.95 (d, J = 8.6 Hz, 1 H), 8.00 (d, J = 8.6 Hz, 2 H), 8.03 (d, J = 9.2 Hz, 2 H), 9.01–9.03 (m, 2 H). EI MS m/z (relative intensity, per cent): 495 [M]⁺ (100), 480 (11), 302 (13), 148 (87).

4-[4-[4-(1*H*, 1*H*, 2*H*, 2*H*-Perfluorohexylthio) phenylazo]naphthylazo]-*N*,*N*-diethylaniline (7 i). Yield 56 per cent; m.p. 74–76°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 1.27$ (t, J = 7.1 Hz, 6 H), 2.49 (tt, J = 16.1 and 8.2 Hz, 2 H), 3.25 (tt, J = 8.2 and 2.9 Hz, 2 H), 3.50 (q, J = 7.1 Hz, 4 H), 6.78 (d, J = 9.3 Hz, 2 H), 7.49 (d, J = 8.5 Hz, 2 H), 7.70–7.73 (m, 2 H), 7.87 (d, J = 8.3 Hz, 1 H), 7.97 (d, J =8.3 Hz, 1 H), 8.03 (d, J = 9.3 Hz, 2 H), 8.05 (d, J = 8.5 Hz, 2 H), 9.00–9.03 (m, 2 H). EI MS *m*/*z* (relative intensity, per cent): 685 [M]⁺ (51), 670 (6), 148 (100). Elemental analysis calculated for C₃₂H₂₈F₉N₅S: C, 56.06; H, 4.12; N, 10.21. Found: C, 56.35; H, 3.90; N, 9.90.

4-[4-[4-(Perfluorobutylthio)phenylazo]naphthylazo]-*N*,*N*-diethylaniline (**7**k). Yield 43 per cent; m.p. 123–126°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 1.26$ (t, J = 7.1 Hz, 6 H), 3.49 (q, J = 7.1 Hz, 4 H), 6.77 (d, J = 7.1 Hz, 4 H)9.3 Hz, 2 H), 7.70-7.73 (m, 2 H), 7.84 (d, J = 8.4 Hz, 1 H), 7.86 (d, J = 8.4 Hz, 2 H), 7.98 (d, J = 8.4 Hz, 1 H), 8.02 (d, J = 8.4 Hz, 1 Hz, 1 H), 8.02 (d, J = 8.4 Hz, 1 Hz, 1 Hz, 1 Hz, 1 Hz, 1 Hz), 8.02 (d, J = 8.4 Hz, 1 Hz, 1 Hz), 8.02 (d,J = 9.3 Hz, 2 H), 8.07 (d, J = 8.4 Hz, 2 H), 9.00-9.04 (m, 2 H). EI MS m/z (relative intensity, per cent): 657 [M]⁺ (100), 642 (16), 148 (64). Elemental analysis calculated for $C_{30}H_{24}F_9N_5S$: C, 54·79; H, 3·68; N, 10·65. Found: C, 54.56; H. 3.56; N. 10.54.

4-[4-[4-(Perfluorooctylthio)phenylazo]naphthylazo]. N,N-diethylaniline (7 m). Yield 15 per cent; m.p. 138-140°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 1.23$ (t, J = 7.1 Hz, 6 H), 3.47 (q, J = 7.1 Hz, 4 H), 6.74 (d, J =9.4 Hz, 2 H), 7.67-7.71 (m, 2 H), 7.81 (d, J = 8.4 Hz, 1 H), 7.84 (d, J = 8.6 Hz, 2 H), 7.95 (d, J = 8.4 Hz, 1 H), 8.00 (d, J = 9.4 Hz, 2 H), 8.04 (d, J = 8.6 Hz, 2 H), 8.96–9.92 (m, 2 H). EI MS m/z (relative intensity, per cent): 857 [M]⁺ (16), 842 (3), 148 (100). Elemental analysis calculated for C₃₄H₂₄F₁₇N₅S: C, 47·62; H, 2·82; N, 8·17. Found: C, 47·88; H, 2·55; N, 7·69.

4-[4-[4-(Butylsulphonyl)phenylazo]naphthylazo]-N,N-diethylaniline (7 n). Yield 19 per cent; m.p. 179–180°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 0.89$ (t, J = 7.7 Hz, 3 H), 1·27 (t, J = 7.0 Hz, 6 H), 1·43 (sextet, J = 7.7 Hz, 2 H), 1·76 (quintet, J = 7.7 Hz, 2 H), 3·16 (t, J = 7.7 Hz, 2 H), 1·76 (quintet, J = 7.7 Hz, 2 H), 3·16 (t, J = 7.7 Hz, 2 H), 3·49 (q, J = 7.0 Hz, 4 H), 6·78 (d, J =9·3 Hz, 2 H), 7·70–7·77 (m, 2 H), 7·82 (d, J = 8.2 Hz, 1 H), 8·01 (d, J = 8.2 Hz, 1 H), 8·03 (d, J = 9.3 Hz, 2 H), 8·09 (d, J = 8.5 Hz, 2 H), 8·19 (d, J = 8.5 Hz, 2 H), 9·00–9·05 (m, 2 H). EI MS m/z (relative intensity, per cent): 527 [M]⁺ (100), 512 (20), 148 (46).

4-[4-[4-(1*H*,1*H*,2*H*,2*H*-Perfluorohexylsulphonyl)phenylazo]naphthylazo]-*N*,*N*-diethylaniline (**7 p**). Yield 28 per cent; m.p. 179–180°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 1.25$ (t, J = 6.9 Hz, 6 H), 2.66 (tt, J = 17.1 and 8.5 Hz, 2 H), 3.41 (tt, J = 8.5 and 4.1 Hz, 2 H), 3.50 (q, J = 6.9 Hz, 4 H), 6.78 (d, J = 8.2 Hz, 2 H), 7.68–7.74 (m, 2 H), 7.88 (d, J = 8.1 Hz, 1 H), 8.02 (d, J = 8.8 Hz, 3 H), 8.12 (d, J = 8.6 Hz, 2 H), 8.23 (d, J = 8.6 Hz, 2 H), 9.00–9.05 (m, 2 H). EI MS *m*/*z* (relative intensity, per cent): 717 [M]⁺ (100), 148 (83), 133 (29). Elemental analysis calculated for C₃₂H₂₈F₉N₅O₂S: C, 53.56; H, 3.93; N, 9.76. Found: C, 53.40; H, 3.87; N, 9.82.

4-[4-[4-[4-(Perfluorobutylsulphonyl) naphthylazo] 9 N,N-diethylaniline (7q). Yield per cent; m.p. 100–101°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 1.27$ (t, J = 6.9 Hz, 6 H), 3.49 (q, J = 6.9 Hz, 4 H), 6.77 (d, J =7.5 Hz, 2 H), 7.70-7.75 (m, 2 H), 7.84 (d, J = 8.2 Hz, 1 H), 7.97 (d, J = 8.2 Hz, 1 H), 8.01 (d, J = 7.5 Hz, 2 H), 8.02 (d, J = 7.5 Hz, 2 Hz, 2 H), 8.02 (d, J = 7.5 Hz, 2 Hz, 2 Hz), 8.02 (d, J = 7.5 Hz, 2 Hz), 8.02 (d, J = 7.5 Hz), 8.02 (d, J = 7J = 6.2 Hz, 2 H), 8.22 (d, J = 6.2 Hz, 2 H), 9.00-9.03 (m,2 H). EI MS m/z (relative intensity, per cent): 689 [M]⁺ (32), 406 (23), 148 (100), 133 (23). Elemental analysis calculated for C₃₀H₂₄F₉N₅O₂S: C, 52·25; H, 3·51; N, 10.16. Found: C, 52.16; H, 3.45; N, 9.90.

4-[4-[4-(Perfluorobutylthio)phenylazo]naphthylazo]-N,N-dimethylaniline (8 k). Yield 41 per cent; m.p. 171–173°C. ¹H NMR (400 MHz, CDCl₃) δ =3·15 (s, 6 H), 6·82 (d, J=9·5 Hz, 2 H), 7·72–7·75 (m, 2 H), 7·85 (d, J=8·2 Hz, 1 H), 7·88 (d, J=9·2 Hz, 2 H), 7·99 (d, J= 8·2 Hz, 1 H), 8·06 (d, J=9·5 Hz, 2 H), 8·09 (d, J=9·2 Hz, 2 H), 9·00–9·05 (m, 2 H). EI MS *m*/*z* (relative intensity, per cent): 629 [M]⁺ (40), 120 (100). Elemental analysis calculated for C₂₈H₂₀F₉N₅S: C, 53·42; H, 3·20; N, 11·12. Found: C, 53·12; H, 2·96; N, 11·24.

4.8. Synthesis of 4-nitro-4'-(4-arylazo)azobenzenes 9

To an acetic acid solution (10 ml) of 4-(arylazo)aniline 3 (0.8 mmol) was added 4-nitrosonitrobenzene (1.12 g, 0.8 mmol) and this was stirred overnight at room temperature. The resulting precipitate was filtered, washed with water, dried and purified by column chromatography. Physical and spectral data are shown below.

4-(4-Butylphenylazo)-4'-nitroazobenzene (**9 b**). Yield 67 per cent; m.p. 165–167°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 0.96$ (t, J = 7.5 Hz, 3 H), 1.40 (sextet, J =7.5 Hz, 2 H), 1.67 (quintet, J = 7.5 Hz, 2 H), 2.71 (t, J =7.5 Hz, 2 H), 7.35 (d, J = 8.3 Hz, 2 H), 7.90 (d, J = 8.3 Hz, 2 H), 8.04 (d, J = 8.8 Hz, 2 H), 8.11 (d, J = 8.8 Hz, 2 H), 8.40 (d, J = 8.8 Hz, 2 H), 8.50 (d, J = 8.8 Hz, 2 H). EI MS (70 eV) m/z (relative intensity, per cent): 387 [M]⁺ (29), 226 (19), 133 (100), 76 (42).

4-Nitro-4'-[4-(perfluorobutyl)phenylazo]azobenzene (9 c). Yield 80 per cent; m.p. 182–183°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 7.80$ (d, J = 8.8 Hz, 2 H), 8.09 (d, J = 8.8 Hz, 2 H), 8.13 (d, J = 9.3 Hz, 2 H), 8.16 (d, J =9.1 Hz, 2 H), 8.40 (d, J = 9.1 Hz, 2 H), 8.42 (d, J = 9.3 Hz, 2 H). EI MS (70 eV) m/z (relative intensity, per cent): 549 [M]⁺ (21), 226 (54), 150 (49), 76 (100).

4-[4-(Butylthio)phenylazo]-4'-nitroazobenzene (**9** f). Yield 61 per cent; m.p. 177–178°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 0.96$ (t, J = 7.3 Hz, 3 H), 1.50 (sextet, J =7.3 Hz, 2 H), 1.72 (quintet, J = 7.3 Hz, 2 H), 3.30 (t, J =7.3 Hz, 2 H), 7.40 (d, J = 8.5 Hz, 2 H), 7.90 (d, J = 8.5 Hz, 2 H), 8.06 (d, J = 9.5 Hz, 2 H), 8.08 (d, J = 9.5 Hz, 2 H), 8.12 (d, J = 9.0 Hz, 2 H), 8.40 (d, J = 9.0 Hz, 2 H). EI MS (70 eV) m/z (relative intensity, per cent): 419 [M]⁺ (45), 165 (100), 109 (42), 76 (60).

4-Nitro-4'-[4-(perfluorobutylthio)phenylazo]azobenzene (**9 k**). Yield 68 per cent; m.p. 190–191°C. ¹H NMR (400 MHz, CDCl₃) δ = 7·85 (d, J = 8·5 Hz, 2 H), 8·01 (d, J = 8·5 Hz, 2 H), 8·10 (d, J = 9·0 Hz, 2 H), 8·14 (d, J = 9·0 Hz, 2 H), 8·15 (d, J = 9·0 Hz, 2 H), 8·42 (d, J = 9·0 Hz, 2 H). EI MS (70 eV) m/z (relative intensity, per cent): 581 [M]⁺ (17), 431 (19), 327 (74), 76 (100).

4.9. Synthesis of 4-[4-(4-arylazo)phenylazo]anilines 10

To an 85 per cent ethanol solution (20 ml) of 4-[4-(arylazo)phenylazo]-4'-nitroazobenzene **9** (0.5 mmol) was added an aqueous solution (5 ml) of sodium sulphide (1 mmol) and heated at reflux for 1 h. The mixture was then filtered, washed with water, dried and purified by column chromatography. Physical and spectral data are shown below.

4-[4-[4-(4-Butylphenylazo)phenylazo]phenylazo]aniline (10b). Yield 86 per cent; m.p. 149-150°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 0.95$ (t, J = 7.5 Hz, 3 H), 1.39 (sextet, J = 7.5 Hz, 2 H), 1.66 (quintet, J = 7.5 Hz, 2 H), 2.70 (t, J = 7.5 Hz, 2 H), 4.11 (s, 2 H), 6.76 (d, J =8.5 Hz, 2 H), 7.33 (d, J = 8.1 Hz, 2 H), 7.85 (d, J = 8.5 Hz, 2 H), 7.87 (d, J = 8.1 Hz, 2 H), 7.98 (d, J = 8.8 Hz, 2 H), 8.02 (d, J = 8.8 Hz, 2 H). E1 MS (70 eV) m/z (relative intensity, per cent): 357 [M]⁺ (90), 120 (85), 92 (100), 65 (33).

4-[4-[4-[4-(Perfluorobutyl)phenylazo]phenylazo]-

phenylazo]aniline (10 c). Yield 47 pcr cent; m.p. 168–169°C. ¹H NMR (400 MHz, CDCl₃) δ =4·14 (s, 2 H), 6·77 (d, J = 8·8 Hz, 2 H), 7·70 (d, J = 8·8 Hz, 2 H), 7·76 (d, J = 8·8 Hz, 2 H), 7·86 (d, J = 8·8 Hz, 2 H), 7·93 (d, J = 8·8 Hz, 2 H), 8·00 (d, J = 8·8 Hz, 2 H). EI MS (70 eV) m/z (relative intensity, per cent): 519 [M]⁺ (27), 120 (50), 92 (100), 65 (36).

4-[4-[4-[4-(Butylthio)phenylazo]phenylazo]phenylazo]aniline (**10f**). Yield 84 per cent; m.p. 149–150°C. ¹H NMR (400 MHz, CDCl₃) δ =0.96 (t, J=7.1 Hz, 3 H), 1.49–1.57 (m, 2 H), 1.58–1.71 (m, 2 H), 3.03 (t, J=7.1 Hz, 2 H), 4.11 (s, 2 H), 6.76 (d, J=8.8 Hz, 2 H), 7.40 (d, J= 8.8 Hz, 2 H), 7.85 (d, J=9.0 Hz, 2 H), 7.88 (d, J=9.0 Hz, 2 H), 7.99 (d, J=9.3 Hz, 2 H), 8.02 (d, J=9.3 Hz, 2 H). EI MS (70eV) *m/z* (relative intensity, per cent): 389 [M]⁺ (70), 196 (17), 165 (23), 92 (100).

4-[4-[4-[4-(Perfluorobutylthio)phenylazo]phenylazo]phenylazo]aniline (10k). Yield 81 per cent; m.p. 179–181°C. ¹H NMR (400 MHz, CDCl₃) δ =4·14 (s, 2 H), 6·76 (d, J = 8·8 Hz, 2 H), 7·82 (d, J = 8·3 Hz, 2 H), 7·84 (d, J = 8·3 Hz, 2 H), 7·86 (d, J = 8·8 Hz, 2 H), 7·97 (d, J = 8·5 Hz, 2 H), 8·07 (d, J = 8·5 Hz, 2 H). EI MS (70 eV) m/z (relative intensity, per cent): 551 [M]⁺ (27), 120 (52), 92 (100), 65 (36).

4.10. Synthesis of 4-[4-[4-(arylazo)phenylazo]phenylazo]-N,N-diethylanilines 11

To a DMF solution (20 ml) of 4-[4-(arylazo)phenylazo]aniline 10 (3.0 mmol) and concentrated hydrochloric acid (0.8 ml, 9.0 mmol) was added an aqueous solution of sodium nitrite (0.2 g, 3.0 mmol) and stirred for 2 h at 0°C. To the suspension was added an aqueous solution of N,N-diethylaniline (0.45 g, 3.0 mmol) and stirred overnight between 0-20°C. The resulting precipitate was filtered, dried, purified by column chromatography and recrystallized from ethanol. Physical and spectral data are shown below.

4-[4-[4-(4-Butylphenylazo)phenylazo]phenylazo]-N,N-diethylaniline (11 b). Yield 33 per cent; m.p. 191-193°C (lit. [13] 192.5°C).

4-[4-[4-[4-(Perfluorobutyl)phenylazo]phenylazo]phenylazo]-*N*,*N*-diethylaniline (**11** c). Yield 35 per cent; m.p. 247–249°C. ¹H NMR (400 MHz, CDCl₃) δ = 1·25 (t, *J* = 7·3 Hz, 6 H), 3·48 (q, *J* = 7·3 Hz, 4 H), 6·75 (d, *J* = 7·8 Hz, 2 H), 7·78 (d, *J* = 7·3 Hz, 2 H), 7·90 (d, *J* = 7·3 Hz, 2 H), 7·92 (d, *J* = 7·8 Hz, 2 H), 7·99 (d, *J* = 8·5 Hz, 2 H), 8·01 (d, *J* = 7·0 Hz, 2 H), 8·09 (d, *J* = 7·0 Hz, 2 H), 8·11 (d, *J* = 8·5 Hz, 2 H). EI MS (70 eV) *m/z* (relative intensity, per cent): 679 [M]⁺ (16), 148 (100), 91 (17), 76 (39). Elemental analysis calculated for C₃₂H₂₆F₉N₇: C, 56·56; H, 3·86; N, 14·43. Found: C, 56·36; H, 3·74; N, 14·27.

4-[4-[4-[4-(Butylthio)phenylazo]phenylazo]phenylazo]phenylazo]-N,N-diethylaniline (11 f). Yield 83 per cent;

m.p. 191–192°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 0.97$ (t, J = 7.3 Hz, 3 H), 1.25 (t, J = 6.9 Hz, 6 H), 1.51 (sextet, J = 7.3 Hz, 2 H), 1.71 (quintet, J = 7.3 Hz, 2 H), 3.03 (t, J = 7.3 Hz, 2 H), 3.48 (q, J = 6.9 Hz, 4 H), 6.74 (d, J =8.2 Hz, 2 H), 7.40 (d, J = 8.2 Hz, 2 H), 7.89 (d, J = 8.7 Hz, 2 H), 7.91 (d, J = 9.0 Hz, 2 H), 7.98 (d, J = 8.7 Hz, 2 H), 8.05 (d, J = 9.0 Hz, 2 H), 8.07 (d, J = 9.0 Hz, 2 H), 8.09 (d, J = 9.0 Hz, 2 H). EI MS (70 eV) m/z (relative intensity, per cent): 549 [M]⁺ (48), 534 (16), 148 (100), 120 (51). Elemental analysis calculated for C₃₂H₃₅N₇S: C, 69.91; H, 6.42; N, 17.84. Found: C, 69.75; H, 6.61; N, 17.58.

4-[4-[4-[4-(Perfluorobutylthio)phenylazo]phenylazo]phenylazo]-*N*,*N*-diethylaniline (11 k). Yield 21 per cent; m.p. 242–244°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 1.26$ (t, J = 7.0 Hz, 6 H), 3.49 (q, J = 7.0 Hz, 4 H), 6.75 (d, J = 9.1 Hz, 2 H), 7.84 (d, J = 8.5 Hz, 2 H), 7.91 (d, J = 9.1 Hz, 2 H), 7.99 (d, J = 8.5 Hz, 2 H), 8.00 (d, J = 8.5 Hz, 2 H), 8.00 (d, J = 8.5 Hz, 2 H), 8.00 (d, J = 8.5 Hz, 2 H), 8.11 (s, 4 H). EI MS (70 eV) *m*/*z* (relative intensity, per cent): 711 [M]⁺ (20), 148 (100), 133 (29). Elemental analysis calculated for $C_{32}H_{26}F_9N_7S$: C, 54.01; H, 3.68; N, 13.78. Found: C, 53.84; H, 3.54; N, 13.72.

4.11. Synthesis of 4-[4-[4-(perfluorobutyl)phenylazo]phenylazo]-1-naphthylamine (12 c)

To a DMF solution (20 ml) of 4-[4-(perfluorobutyl)phenylazo]aniline 3c (1.25g, 3.0 mmol) and concentrated hydrochloric acid (0.8 ml, 9.0 mmol) was added an aqueous solution of sodium nitrite (0.2 g, 3.0 mmol) and stirred for 2 h at 0°C. To the suspension was added an aqueous solution (100 ml) of 1-naphthylamine (0.45 g)3.0 mmol) and stirred overnight between 0-20°C. The resulting precipitate was filtered, dried, purified by column chromatography (SiO₂, CHCl₃) and crystallized from a chloroform-hexane solution. Yield 58 per cent; m.p. 171–172°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 4.11$ (s, 2 H), 6.84 (d, J = 8.3 Hz, 2 H), 7.59 (t, J = 8.1 Hz, 1 H),7.69 (t, J = 8.1 Hz, 1 H), 7.77 (d, J = 8.1 Hz, 1 H), 7.84 (d, J = 8.1 Hz, 1 H), 8.01 (d, J = 8.5 Hz, 2 H), 8.06 (d, J =8.3 Hz, 2 H), 8.07-8.13 (m, 2 H), 9.10 (d, J=8.5 Hz, 2 H). EI MS (70 eV) m/z (relative intensity, per cent): 569 $[M]^+$ (35), 142 (100).

4.12. Synthesis of 4-[4-[4-(perfluorobutyl)phenylazo]phenylazo]naphthylazo]-N, N-diethylaniline (13 c)

To a DMF solution (20 ml) of 4-[4-(4-(perfluorobutyl)phenylazo]phenylazo]-1-naphthylamine 12 c (1.71 g, 3.0 mmol) and concentrated hydrochloric acid (0.8 ml, 9.0 mmol) was added an aqueous solution of sodium nitrite (0.2 g, 3.0 mmol) and stirred for 2 h at 0° C. To the suspension was added an aqueous solution (100 ml) of N,N-diethylaniline (0.45 g, 3.0 mmol) and stirred overnight between $0-20^{\circ}$ C. The resulting precipitate was filtered, dried, purified by column chromatography (SiO₂, CHCl₃: C₆H₁₄=1:1) and recrystallized from ethanol. Yield 12 per cent; m.p. 123–124°C. ¹H NMR (400 MHz, CDCl₃) $\delta = 1.27$ (t, J = 7.2 Hz, 6 H), 3.50 (q, J = 7.2 Hz, 4 H), 6.80 (d, J = 7.6 Hz, 2 H), 7.74 (t, J = 7.8 Hz, 1 H), 7.77 (t, J = 7.8 Hz, 1 H), 7.80 (d, J =7.8 Hz, 1 H), 7.90 (d, J = 7.8 Hz, 1 H), 7.98 (d, J = 7.8 Hz, 1 H), 8.00 (d, J = 8.3 Hz, 2 H), 8.04 (d, J = 7.6 Hz, 2 H), 8.08 (d, J = 7.8 Hz, 1 H), 8.18 (d, J = 8.3 Hz, 2 H), 8.24 (d, J = 8.3 Hz, 2 H), 9.04 (d, J = 8.3 Hz, 2 H). EI MS (70 eV) m/z (relative intensity, per cent): 729 [M]⁺ (100), 176 (16), 148 (94). Elemental analysis calculated for $C_{36}H_{28}F_9N_7$: C, 59.26; H, 3.87; N, 13.44. Found: C, 59.10; H, 3.97; N, 13.65.

4.13. Calculation of θ values and l/d ratios

Both the values were calculated from the geometry of the most stable conformer optimized by the MOPAC93 program [15] by the MNDO-PM3 method [16]. On optimization of conformations, dye molecules were assumed to have Cs symmetry. Transition moments of the dyes were calculated by the CNDO/S method [17] (singlet excitation, Nishimoto–Mataga equation, and 60 Cl) using the geometry obtained by the MNDO-PM3 calculation. The long axes were based on the π -conjugation system of dyes.

This work was in part supported by the Iketani Foundation.

References

- [1] 1988, Chemistry of Functional Dyes, edited by Z. Yoshida, and T. Kitao (Tokyo, Mita Press); 1993, Chemistry of Functional Dyes, Vol. 2, edited by Z. Yoshida and Y. Shirota (Tokyo, Mita Press); 1991, Color Chemistry, edited by H. Zollinger (Weinheim, VCH); 1991, High-Technology of Organic Colorants, edited by P. Gregoly (New York, Plenum Press).
- [2] WOLARZ, E., MORYSON, H., and BAUMAN, D., 1992, Displays, 13, 171; YASUI, S., MATSUOKA, M., and

KITAO, T., 1986, Shikizai Kyokai Shi, **59**, 743; SEKI, H., UCHIDA, T., and SHIBATA, Y., 1986, Mol. Cryst. liq. Cryst., **138**, 349; SEKI, H., UCHIDA, T., and SHIBATA, Y., 1985, Jpn. J. appl. Phys. Part 2, **24**, L299; MATSUMOTO, S., MIZUNOVA, K., HATOU, H., and TOMII, H., 1985, Mol. Cryst. liq. Cryst., **122**, 285; RUMYANTSEV, V. G., IVASHCHENKO, A. V., MURATOV, V. M., LAZAREZA, V. T., PRUDNIKOVA, E. K., and BLINOV, L. M., 1983, Mol. Cryst. liq. Cryst., **94**, 205; GHARADJEDAGHI, F., 1981, Mol. Cryst. liq. Cryst., **68**, 127; MIZUNOYA, K., KANEKO, N., KAWAMOTO, M., and MATSUMOTO, S., 1980, Oyo Butsuri, **49**, 471; UCHIDA, T., SEKI, H., SHISHIDO, C., and WADA, M., 1979, Mol. Cryst. liq. Cryst., **54**, 161; HEILMER, G. H., and ANONI, L. A., 1968, Appl. Phys. Lett., **13**, 91.

- [3] MATSUI, M., SHIBATA, K., MURAMATSU, H., SAWADA, H., and NAKAYAMA, M., 1992, Chem. Ber., 125, 467.
- [4] NISHIDA, H., TAKADA, N., YOSHIMURA, M., SONODA, T., and KOBAYASHI, H., 1984, Bull. Chem. Soc. Jpn., 57, 2600.
- [5] HANAZAWA, M., SUMIYA, R., HORIKAWA, Y., and IRIE, M., 1992, J. chem. Soc. chem. Commun., 206.
- [6] YOSHINO, N., KITAMURA, M., SETO, T., SHIBATA, Y., ABE, M., and OGINO, K., 1992, Bull. Chem. Soc. Jpn., 65, 2141.
- [7] UHER, M., ANTOŠ, K., KRITIÁN, P., and DROBNICA, E., 1967, Chemické Zvesti, 21, 44.
- [8] BALAH, T., and REDDY, D.-B., 1979, Bull. Chem. Soc. Jpn., 52, 3434.
- [9] JOGLEKAR, B., MIYAKE, T., KAWASE, R., SHIBATA, K., MURAMATSU, H., and MATSUI, M., 1995, J. Fluorine Chem., 74, 123.
- [10] KOGO, Y., and KIKUCHI, H., 1979, Nippon Kagaku Kaishi, 1524.
- [11] 1973, Handbook of Photochemistry, edited by S. L. Murov (New York, Marcel Dekker Inc.).
- [12] CATCHPOLE, A. G., and KNAUST, R. A., 1960, J. Chem. Soc., 4241.
- [13] YASUI, S., MATSUOKA, M., TAKAO, M., and KITAO, T., 1988, J. Soc. Dyers Col., 104, 284.
- [14] YASUI, S., MATSUOKA, M., and KITAO, T., 1988, Shikizai Kyokai Shi, 61, 678.
- [15] MOPAC93, JCPE No. P081, JCPE Office, 1-7-12 Nishinenishi, Thuchiura 300, Japan.
- [16] STEWART, J. J. P., 1989, J. Comput. Chem., 10, 209.
- [17] TANAKA, S., and UEDA, Y., 1985, Chem. Pharm. Bull., 33, 3077.